In this week’s journal club #46, we are recommending a study that looks at the interaction between opioid and cannabinoid receptors in a model for diabetic neuropathy; a paper on the influence of estrogen on the effects of cannabinoid receptor 1 (CB1R); a publication on cannabinoid receptor 2 in human colorectal cancer; and lastly a study looking at the involvement of the endocannabinoid system in ameliorate dry skin-induced chronic itching.
Note: This is a post for cannabis scientists. A weekly curation of fresh papers that help advance our understanding of cannabis and the endocannabinoid system.
Interactions between cannabinoid and opioid receptors in a mouse model of diabetic neuropathy.
Toniolo EF, Gupta A, Franciosi AC, Gomes I, Devi LA, Dale CS.
Pain. 2022 Jul 1;163(7):1414-1423.
Diabetic neuropathy, often associated with diabetes mellitus, is a painful condition with no known effective treatment except glycemic control. Studies with neuropathic pain models report alterations in cannabinoid and opioid receptor expression levels; receptors whose activation induces analgesia. We examined whether interactions between CB1R and opioid receptors could be targeted for the treatment of diabetic neuropathy. For this, we generated antibodies that selectively recognize native CB1R-MOR and CB1R-DOR heteromers using a subtractive immunization strategy. We assessed the levels of CB1R, MOR, DOR, and interacting complexes using a model of streptozotocin-induced diabetic neuropathy and detected increased levels of CB1R, MOR, DOR, and CB1R-MOR complexes compared with those in controls. An examination of G-protein signaling revealed that activity induced by the MOR, but not the DOR agonist, was potentiated by low nanomolar doses of CB1R ligands, including antagonists, suggesting an allosteric modulation of MOR signaling by CB1R ligands within CB1R-MOR complexes. Because the peptide endocannabinoid, hemopressin, caused a significant potentiation of MOR activity, we examined its effect on mechanical allodynia and found that it blocked allodynia in wild-type mice and mice with diabetic neuropathy lacking DOR (but have CB1R-MOR complexes). However, hemopressin does not alter the levels of CB1R-MOR complexes in diabetic mice lacking DOR but increases the levels of CB1R-DOR complexes in diabetic mice lacking MOR. Together, these results suggest the involvement of CB1R-MOR and CB1R-DOR complexes in diabetic neuropathy and that hemopressin could be developed as a potential therapeutic for the treatment of this painful condition.
doi: 10.1097/j.pain.0000000000002527. Epub 2021 Oct 27. PMID: 34724682; PMCID: PMC9043031.
https://pubmed.ncbi.nlm.nih.gov/34724682/
Estrogen dampens central cannabinoid receptor 1-mediated neuroexcitation and pressor response in conscious female rats.
Yao F, Abdel-Rahman AA.
Biochem Pharmacol. 2022 Jul;201:115102.
Activation of the rostral ventrolateral medulla (RVLM) cannabinoid receptor-1 (CB1R) causes neuronal nitric oxide synthase (nNOS)-dependent increases in sympathetic activity, blood pressure (BP) and heart rate (HR) in male rats. However, it remains unknown if the CB1R-mediated neurochemical and cardiovascular responses are influenced by the ovarian sex hormones, particularly estrogen (E2). Therefore, we studied the effects of intra-RVLM CB1R activation (WIN 55,212-2) on BP and HR in conscious female rats under the following hormonal states: (1) highest E2 level (proestrus sham-operated, SO); (2) E2-deprivation (ovariectomized, OVX); (3) OVX with E2 replacement (OVXE2). Intra-RVLM WIN55,212-2 elicited dose (100-400 pmol) dependent pressor and tachycardic responses, in OVX rats, which replicated the reported responses in male rats. However, in SO and OVXE2 rats, the CB1R-mediated pressor response was attenuated and the tachycardic response reverted to bradycardic response. The neurochemical findings suggested a key role for the upregulated RVLM sympathoexcitatory molecules phosphorated protein kinase B, phosphorated nNOS and reactive oxygen species in the exaggerated CB1R-mediated BP and HR responses in OVX rats, and an E2-dependent dampening of these responses. The intra-RVLM WIN55212-2-evoked cardiovascular and neurochemical responses were CB1R-mediated because they were attenuated by prior CB1R blockade (AM251). Our findings suggest that attenuation of RVLM neuroexcitation and oxidative stress underlies the protection conferred by E2, in female rats, against the CB1R-mediated adverse cardiovascular effects.
doi: 10.1016/j.bcp.2022.115102. Epub 2022 May 23. PMID: 35617998.
https://pubmed.ncbi.nlm.nih.gov/35617998/
Cannabidiol exerts anti-proliferative activity via a cannabinoid receptor 2-dependent mechanism in human colorectal cancer cells.
Lee HS, Tamia G, Song HJ, Amarakoon D, Wei CI, Lee SH.
Int Immunopharmacol. 2022 Jul;108:108865.
Colorectal cancer is the third leading cause of cancer incidence and mortality in the United States. Cannabidiol (CBD), the second most abundant phytocannabinoid in Cannabis sativa, has potential use in cancer treatment on the basis of many studies showing its anti-cancer activity in diverse types of cancer, including colon cancer. However, its mechanism of action is not yet fully understood. In the current study, we observed CBD to repress viability of different human colorectal cancer cells in a dose-dependent manner. CBD treatment led to G1-phase cell cycle arrest and an increased sub-G1 population (apoptotic cells); it also downregulated protein expression of cyclin D1, cyclin D3, cyclin-dependent kinase 2 (CDK2), CDK4, and CDK6. CBD further increased caspase 3/7 activity and cleaved poly(ADP-ribose) polymerase, and elevated expression of endoplasmic reticulum (ER) stress proteins including binding immunoglobulin protein (BiP), inositol-requiring enzyme 1α (IRE1α), phosphorylated eukaryotic initiation factor 2α (eIF2α), activating transcription factor 3 (ATF3), and ATF4. We found that CBD repressed cell viability and induced apoptotic cell death through a mechanism dependent on cannabinoid receptor type 2 (CB2), but not on CB1, transient receptor potential vanilloid, or peroxisome proliferator-activated receptor gamma. Anti-proliferative activity was also observed for other non-psychoactive cannabinoid derivatives including cannabidivarin (CBDV), cannabigerol (CBG), cannabicyclol (CBL), and cannabigerovarin (CBGV). Our data indicate that CBD and its derivatives could be promising agents for the prevention of human colorectal cancer.
doi: 10.1016/j.intimp.2022.108865. Epub 2022 May 19. PMID: 35598400.
https://pubmed.ncbi.nlm.nih.gov/35598400/
The Effects of Cannabinoid Agonist, Heat Shock Protein 90 and Nitric Oxide Synthase Inhibitors on Increasing IL-13 and IL-31 Levels in Chronic Pruritus.
Todurga Seven ZG, Çakır Gündoğdu A, Ozyurt R, Özyazgan S.
Immunol Invest. 2022 Jun 8:1-12.
Heat shock protein 90 (Hsp90) inhibitor and cannabinoid agonists ameliorate dry skin-induced chronic itch. We have recently reported that cannabinoids, hsp90 and nitric oxide (NO) are involved in dry skin-induced itch. Here, we investigated the contribution of the Th2 cell signaling pathway to the antipruritic effect of the hsp90 inhibitor 17-Alilamino-17-demethoxygeldanamycin (17-AAG), nitric oxide synthase (NOS) inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) and cannabinoid agonist WIN 55,212-2 on a dry skin-induced scratch. Dry skin-induced chronic itching was created by topical application of AEW (acetone/diethyl ether/water). WIN 55,212-2 (1 mg/kg, i.p.), L-NAME (1 mg/kg, i.p.) and increasing doses of 17-AAG (1, 3 and 5 mg/kg,i.p.) were administered to Balb/c mice (for each group, n = 6). After these applications, skin tissues were taken from the nape region of all of the mice. Gene and protein expressions of IL-13 and IL-31 were evaluated in skin tissues by RT-PCR and immunohistochemistry, respectively. IL-13 and IL-31 mRNA expressions and immune positive cell counts were increased in the AEW applied groups. WIN 55,212-2 reduced both of the increased cytokines levels, while L-NAME decreased only the IL-13. 17-AAG dose-dependently reduced the increased cytokine levels. IL-13 and IL-31 levels significantly decreased following the co-administration of these agents. These results show that increased levels of IL-13 and IL-31 are associated with pruritus. Hsp90 inhibition and cannabinoid system activation may induce antipruritic effects through down-regulation of these cytokines.
doi: 10.1080/08820139.2022.2083973. Epub ahead of print. PMID: 35675220.
https://pubmed.ncbi.nlm.nih.gov/35675220/